Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Cells ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474350

RESUMO

Fetal alcohol spectrum disorders (FASD) caused by developmental ethanol exposure lead to cerebellar impairments, including motor problems, decreased cerebellar weight, and cell death. Alterations in the sole output of the cerebellar cortex, Purkinje cells, and central nervous system immune cells, microglia, have been reported in animal models of FASD. To determine how developmental ethanol exposure affects adult cerebellar microglia and Purkinje cells, we used a human third-trimester binge exposure model in which mice received ethanol or saline from postnatal (P) days 4-9. In adolescence, cerebellar cranial windows were implanted and mice were aged to young adulthood for examination of microglia and Purkinje cells in vivo with two-photon imaging or in fixed tissue. Ethanol had no effect on microglia density, morphology, dynamics, or injury response. However, Purkinje cell linear frequency was reduced by ethanol. Microglia-Purkinje cell interactions in the Purkinje Cell Layer were altered in females compared to males. Overall, developmental ethanol exposure had few effects on cerebellar microglia in young adulthood and Purkinje cells appeared to be more susceptible to its effects.


Assuntos
Etanol , Transtornos do Espectro Alcoólico Fetal , Gravidez , Masculino , Humanos , Feminino , Animais , Camundongos , Adulto Jovem , Adulto , Idoso , Etanol/farmacologia , Células de Purkinje , Transtornos do Espectro Alcoólico Fetal/etiologia , Transtornos do Espectro Alcoólico Fetal/metabolismo , Microglia/metabolismo , Cerebelo/metabolismo , Modelos Animais de Doenças
2.
PLoS One ; 19(1): e0293425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271377

RESUMO

Prenatal alcohol exposure (PAE) can result in mild to severe consequences for children throughout their lives, with this range of symptoms referred to as Fetal Alcohol Spectrum Disorders (FASD). These consequences are thought to be linked to changes in gene expression and transcriptional programming in the brain, but the identity of those changes, and how they persist into adolescence are unclear. In this study, we isolated RNA from the hippocampus of adolescent rats exposed to ethanol during prenatal development and compared gene expression to controls. Briefly, dams were either given free access to standard chow ad libitum (AD), pair-fed a liquid diet (PF) or were given a liquid diet with ethanol (6.7% ethanol, ET) throughout gestation (gestational day (GD) 0-20). All dams were given control diet ad libitum beginning on GD 20 and throughout parturition and lactation. Hippocampal tissue was collected from adolescent male and female offspring (postnatal day (PD) 35-36). Exposure to ethanol caused widespread downregulation of many genes as compared to control rats. Gene ontology analysis demonstrated that affected pathways included cell adhesion, toxin metabolism, and immune responses. Interestingly, these differences were not strongly affected by sex. Furthermore, these changes were consistent when comparing ethanol-exposed rats to pair-fed controls provided with a liquid diet and those fed ad libitum on a standard chow diet. We conclude from this study that changes in genetic architecture and the resulting neuronal connectivity after prenatal exposure to alcohol continue through adolescent development. Further research into the consequences of specific gene expression changes on neural and behavioral changes will be vital to our understanding of the FASD spectrum of diseases.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Humanos , Criança , Ratos , Feminino , Masculino , Gravidez , Animais , Adolescente , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Adesão Celular , Hipocampo/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Parto , Imunidade
3.
Gene ; 894: 147951, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37918548

RESUMO

BACKGROUND: Fetal alcohol spectrum disorders (FASD) are the most common preventable cause of birth defects and neurodevelopmental disorders worldwide. The placenta is the crucial interface between mother and fetus. Prenatal alcohol exposure (PAE) has been shown to alter placental structure and expression of genes in bulk placental tissue samples, but prior studies have not examined effects on placental cell-type composition or taken cell-type into consideration in transcriptome analyses. METHODS: We leveraged an existent placenta single-cell RNA-seq dataset to perform cell-type deconvolution of bulk placental RNA-seq data from 35 heavy drinking pregnant women and 33 controls in a prospective birth cohort in Cape Town, South Africa. We used bivariate analyses and multivariable adjusted linear regression models to assess the relation of PAE on inferred placental cell-type proportions. We also examined differential expression of inflammatory response genes and PAE, using multivariable adjusted linear models. RESULTS: Deconvolution analyses showed heterogeneous placenta cell-type composition in which stromal (27 %), endothelial (26 %) and cytotrophoblasts (18 %) were the predominant cell-types. PAE around conception was associated with a higher proportion of Hofbauer cells (B = 0.51, p = 0.035) in linear models adjusted for maternal age, infant sex, and gestational age. Among the 652 inflammatory genes examined, 35 were differential expressed in alcohol exposed placentas (FDR p < 0.05). CONCLUSIONS: Our findings suggest that heavy alcohol exposure during pregnancy can influence the proportion of fetal placental villi macrophages (Hofbauer cells) and increased expression of inflammatory genes. Future studies are needed to further characterize these effects and to assess the potential functional roles of placental inflammation in FASD.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Feminino , Gravidez , Humanos , Placenta/metabolismo , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/metabolismo , Estudos Prospectivos , RNA-Seq , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , África do Sul , Etanol/toxicidade , Expressão Gênica
4.
Free Radic Biol Med ; 208: 272-284, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541454

RESUMO

The breast cancer 1 (Brca1) susceptibility gene regulates the repair of reactive oxygen species (ROS)-mediated DNA damage, which is implicated in neurodevelopmental disorders. Alcohol (ethanol, EtOH) exposure during pregnancy causes fetal alcohol spectrum disorders (FASD), including abnormal brain function, associated with enhanced ROS-initiated DNA damage. Herein, oxidative DNA damage in fetal brains and neurodevelopmental disorders were enhanced in saline-exposed +/- vs. +/+ Brca1 littermates. A single EtOH exposure during gestation further enhanced oxidative DNA damage, altered the expression of developmental/DNA damage response genes in fetal brains, and resulted in neurodevelopmental disorders, all of which were BRCA1-dependent. Pretreatment with the ROS inhibitor phenylbutylnitrone (PBN) blocked DNA damage and some neurodevelopmental disorders in both saline- and EtOH-exposed progeny, corroborating a ROS-dependent mechanism. Fetal BRCA1 protects against altered gene expression and neurodevelopmental disorders caused by both physiological and EtOH-enhanced levels of ROS formation. BRCA1 deficiencies may enhance the risk for FASD.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Neoplasias , Transtornos do Neurodesenvolvimento , Gravidez , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Etanol/toxicidade , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/genética , Expressão Gênica , Proteína BRCA1/genética
5.
Eur J Pharmacol ; 955: 175878, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37433363

RESUMO

Prenatal alcohol exposure (PAE) affects neuronal networks and brain development causing a range of physical, cognitive and behavioural disorders in newborns that persist into adulthood. The array of consequences associated with PAE can be grouped under the umbrella-term 'fetal alcohol spectrum disorders' (FASD). Unfortunately, there is no cure for FASD as the molecular mechanisms underlying this pathology are still unknown. We have recently demonstrated that chronic EtOH exposure, followed by withdrawal, induces a significant decrease in AMPA receptor (AMPAR) expression and function in developing hippocampus in vitro. Here, we explored the EtOH-dependent pathways leading to hippocampal AMPAR suppression. Organotypic hippocampal slices (2 days in cultures) were exposed to EtOH (150 mM) for 7 days followed by 24 h EtOH withdrawal. Then, the slices were analysed by means of RT-PCR for miRNA content, western blotting for AMPA and NMDA related-synaptic proteins expression in postsynaptic compartment and electrophysiology to record electrical properties from CA1 pyramidal neurons. We observed that EtOH induces a significant downregulation of postsynaptic AMPA and NMDA subunits and relative scaffolding protein expression and, accordingly, a decrease of AMPA-mediated neurotransmission. Simultaneously, we found that chronic EtOH induced-upregulation of miRNA 137 and 501-3p and decreased AMPA-mediated neurotransmission are prevented by application of the selective mGlu5 antagonist MPEP during EtOH withdrawal. Our data indicate mGlu5 via miRNA137 and 501-3p expression as key factors in the regulation of AMPAergic neurotransmission that may contribute, at least in part, to the pathogenesis of FASD.


Assuntos
Transtornos do Espectro Alcoólico Fetal , MicroRNAs , Efeitos Tardios da Exposição Pré-Natal , Recém-Nascido , Humanos , Feminino , Gravidez , Etanol/farmacologia , Etanol/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , N-Metilaspartato/farmacologia , Regulação para Cima , Transtornos do Espectro Alcoólico Fetal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Hipocampo/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Commun Biol ; 6(1): 736, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460609

RESUMO

Fetal alcohol spectrum disorders (FASD) show behavioral problems due to prenatal alcohol exposure (PAE). A previous study reports changes in gene expressions linked to fatty acid (FA) metabolism in the cerebral cortex of the PAE mouse model. We find an increase of palmitic acid and arachidonic acid in phospholipid in the cerebral cortex of PAE at postnatal day 30. The increase of palmitic acid is consistent with increase of the producing enzyme, Fasn (fatty acid synthase). Decrease of 26:6 FA is also consistent with the increase of the enzyme which uses 26:6 as a substrate for making very long chain FAs, Elovl4 (elongation of very long chain fatty acids protein 4). However, there is no increase in the elongated products. Rather, lipid droplets (LDs) accumulated in the brain. Although FA-associated metabolic measurements are not affected by PAE, the abundance of FA-related gut microbiota is altered. This suggests that the gut microbiome could serve as a tool to facilitate uncovering the brain pathophysiology of FASD and a potential target to mitigate neurobehavioral problems.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Humanos , Camundongos , Animais , Feminino , Gravidez , Transtornos do Espectro Alcoólico Fetal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Modelos Animais de Doenças , Ácidos Palmíticos , Ácidos Graxos
7.
Alcohol ; 110: 65-81, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36898643

RESUMO

INTRODUCTION: Prenatal alcohol exposure can impair placentation and cause intrauterine growth restriction (IUGR), fetal demise, and fetal alcohol spectrum disorder (FASD). Previous studies showed that ethanol's inhibition of placental insulin and insulin-like growth factor, type 1 (IGF-1) signaling compromises trophoblastic cell motility and maternal vascular transformation at the implantation site. Since soy isolate supports insulin responsiveness, we hypothesized that dietary soy could be used to normalize placentation and fetal growth in an experimental model of FASD. METHODS: Pregnant Long-Evans rat dams were fed with isocaloric liquid diets containing 0% or 8.2% ethanol (v/v) from gestation day (GD) 6. Dietary protein sources were either 100% soy isolate or 100% casein (standard). Gestational sacs were harvested on GD19 to evaluate fetal resorption, fetal growth parameters, and placental morphology. Placental insulin/IGF-1 signaling through Akt pathways was assessed using commercial bead-based multiplex enzyme-linked immunosorbent assays. RESULTS: Dietary soy markedly reduced or prevented the ethanol-associated fetal loss, IUGR, FASD dysmorphic features, and impairments in placentation/maturation. Furthermore, ethanol's inhibitory effects on the placental glycogen cell population at the junctional zone, invasive trophoblast populations at the implantation site, maternal vascular transformation, and signaling through the insulin and IGF1 receptors, Akt and PRAS40 were largely abrogated by co-administration of soy. CONCLUSION: Dietary soy may provide an economically feasible and accessible means of reducing adverse pregnancy outcomes linked to gestational ethanol exposure.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Ratos , Animais , Humanos , Gravidez , Feminino , Placentação , Placenta/metabolismo , Insulina/metabolismo , Retardo do Crescimento Fetal/induzido quimicamente , Retardo do Crescimento Fetal/prevenção & controle , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Transtornos do Espectro Alcoólico Fetal/prevenção & controle , Transtornos do Espectro Alcoólico Fetal/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Long-Evans , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Etanol/efeitos adversos , Morte Fetal , Dieta
8.
Genes (Basel) ; 14(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36672936

RESUMO

Fetal alcohol spectrum disorder (FASD) encompasses the range of deleterious outcomes of prenatal alcohol exposure (PAE) in the affected offspring, including developmental delay, intellectual disability, attention deficits, and conduct disorders. Several factors contribute to the risk for and severity of FASD, including the timing, dose, and duration of PAE and maternal factors such as age and nutrition. Although poorly understood, genetic factors also contribute to the expression of FASD, with studies in both humans and animal models revealing genetic influences on susceptibility. In this article, we review the literature related to the genetics of FASD in humans, including twin studies, candidate gene studies in different populations, and genetic testing identifying copy number variants. Overall, these studies suggest different genetic factors, both in the mother and in the offspring, influence the phenotypic outcomes of PAE. While further work is needed, understanding how genetic factors influence FASD will provide insight into the mechanisms contributing to alcohol teratogenicity and FASD risk and ultimately may lead to means for early detection and intervention.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Animais , Humanos , Feminino , Gravidez , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/diagnóstico , Transtornos do Espectro Alcoólico Fetal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Mães , Etanol/toxicidade , Modelos Animais
9.
Life Sci ; 310: 121102, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270428

RESUMO

One of the most common causes of fetal alcohol spectrum disease (FASD) characterized with neurodevelopmental disorder and growth retardation, is the postnatal alcohol consumption. Since studies in literature are mainly focused on alcohol-induced effects on brain tissues, the molecular effects of postnatal alcohol consumption on fetal liver are not clarified yet. The aim of this study is to determine the postnatal alcohol consumption-induced structural and compositional changes on liver tissue and the antioxidant capacity of liver. Newborn mice were divided into 3 groups as control group without any treatment, alcohol group treated with 3.0 g/kg of ethanol in 0.02 ml/g of artificially enriched milk between Postnatal Days (PD) 3-20 and intragastric intubation control group which was intragastrically intubated in the same method as the alcohol group but without ethanol/milk. These postnatal days in mice refers prenatal period (third trimester) of gestation in human. The biomolecular changes were determined by ATR-FTIR spectral analysis of the samples, besides the biochemical measurement of total protein content and antioxidant capacity of liver tissue. The result of the current study shows that while there was a slight increase in total lipid content, significant decrease in unsaturated lipid and total protein contents and total antioxidant capacity of liver were observed in alcohol-treated group. Thus, it is concluded that postnatal alcohol treatment causes significant changes in tissue proteins and lipids by inducing lipid peroxidation and changes in protein conformations of the liver tissue. In addition to that alcohol consumption also reduce the antioxidant capacity of liver tissue.


Assuntos
Antioxidantes , Transtornos do Espectro Alcoólico Fetal , Gravidez , Feminino , Humanos , Animais , Camundongos , Animais Recém-Nascidos , Etanol/toxicidade , Fígado/metabolismo , Lipídeos , Transtornos do Espectro Alcoólico Fetal/metabolismo
10.
Alcohol Clin Exp Res ; 46(11): 1953-1966, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36109176

RESUMO

BACKGROUND: Fetal alcohol spectrum disorders (FASD) occur in children who were exposed to alcohol in utero and are manifested in a wide range of neurocognitive deficits. These deficits could be caused by alterations to the cortical microvasculature that are controlled by post-transcriptional regulators such as microRNAs. METHODS: Using an established mouse model of moderate prenatal alcohol exposure (PAE), we isolated cortices (CTX) and brain microvascular endothelial cells (BMVECs) at embryonic day 18 (E18) and examined the expression of miR-150-5p and potential downstream targets. Cellular transfections and intrauterine injections with LNA™ mimics or inhibitors were used to test miR-150-5p regulation of novel target vascular endothelial zinc finger 1 (Vezf1). Dual-luciferase assays were used to assess the direct binding of miR-150-5p to the Vezf1 3'UTR. The effects of miR-150-5p and Vezf1 on endothelial cell function were determined by in vitro migration and tube formation assays. RESULTS: We found that miR-150-5p was upregulated and Vezf1 was downregulated during PAE in the E18 CTX and BMVECs. Transfection with miR-150-5p mimics resulted in decreased Vezf1 expression in BMVECs, while miR-150-5p inhibition did the opposite. Dual-luciferase assays revealed direct binding of miR-150-5p with the Vezf1 3'UTR. Intrauterine injections showed that miR-150-5p regulates the expression of Vezf1 in vivo during PAE. miR-150-5p overexpression decreased BMVEC migration and tube formation, while miR-150-5p inhibition enhanced migration and tube formation. Vezf1 overexpression rescued the effects of the miR-150-5p mimic. Alcohol treatment of BMVECs increased miR-150-5p expression and inhibited migration and tube formation. Finally, miR-150-5p inhibition and Vezf1 overexpression rescued the negative effects of alcohol on migration and tube formation. CONCLUSIONS: miR-150-5p regulation of Vezf1 results in altered endothelial cell function during alcohol exposure. Further, miR-150-5p inhibition of Vezf1 may adversely alter the development of the cortical microvasculature during PAE and contribute to deficits seen in patients with FASD.


Assuntos
Transtornos do Espectro Alcoólico Fetal , MicroRNAs , Efeitos Tardios da Exposição Pré-Natal , Humanos , Animais , Camundongos , Feminino , Gravidez , Indutores da Angiogênese/metabolismo , Indutores da Angiogênese/farmacologia , Regiões 3' não Traduzidas , Células Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Transtornos do Espectro Alcoólico Fetal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , MicroRNAs/metabolismo , Encéfalo/metabolismo , Microvasos , Luciferases/metabolismo , Luciferases/farmacologia , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
11.
Birth Defects Res ; 114(14): 797-804, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35686682

RESUMO

BACKGROUND: Prenatal alcohol exposure (PAE), leading to fetal alcohol spectrum disorders (FASD), is a serious public health issue in the United States and globally. Diagnosis of FASD is crucial in obtaining appropriate care, but it is not always possible when PAE cannot be documented. METHODS: Deciduous teeth from a child with known PAE and a child with known absence of PAE were analyzed using liquid chromatography-isotope dilution tandem mass spectrometry (LC-IDMS/MS) in a multiple-reaction monitoring mode for direct markers and LC-high resolution MS in positive and negative mode with hydrophilic interaction liquid chromatography and reverse-phase chromatography, respectively, for indirect markers. RESULTS: Direct markers of PAE (ethyl glucuronide and ethyl sulfate) were detected in prenatal and postnatal dentine from a case tooth but not from a control tooth. Indirect biomarker analysis indicated a dysregulation of amino acids and an increase in cholesterol sulfate in the case compared to the control tooth. CONCLUSIONS: This proof-of-concept study demonstrates for the first time that direct biomarkers of PAE are detectable and measurable in deciduous teeth which begin forming in utero and are typically naturally shed between 5 and 12 years of age. Further examination of these novel biomarkers may allow diagnosis of FASD where documentation of PAE is otherwise unavailable. Furthermore, because teeth grow incrementally, defined growth zones can be sampled allowing for identification of gestational timing of PAE to help better understand mechanisms underlying alcohol's disruption of perinatal development.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Biomarcadores , Criança , Cromatografia Líquida , Feminino , Transtornos do Espectro Alcoólico Fetal/metabolismo , Humanos , Lactente , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Dente Decíduo
12.
Neurotox Res ; 40(2): 605-613, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386022

RESUMO

Fetal alcohol exposure has permanent effects on the brain structure, leading to functional deficits in several aspects of behavior, including learning and memory. Alcohol-induced neurocognitive impairment in offsprings is included with activation of oxidative- inflammatory cascade followed with wide apoptotic neurodegeneration in several brain areas, such as the hippocampus. Metformin is the first-line treatment for diabetic patients. It rapidly crosses the blood-brain barrier (BBB) and exerts antioxidant, anti-inflammatory, and neuroprotective effects. In this study, we evaluated the protective effects of metformin on ethanol-related neuroinflammation, as well as neuron apoptosis in the hippocampus of adult male rat in animal model of fetal alcohol spectrum disorders. Treatment with ethanol in milk solution (5.25 and 27.8 g/kg, respectively) was conducted by intragastric intubation at 2-10 days after birth. To examine the antioxidant and anti-inflammatory properties of metformin, an ELISA assay was performed for determining the tumor necrosis factor-α (TNF-α) and antioxidant enzyme concentrations. Immunohistochemical staining was conducted for evaluating the glial fibrillary acidic protein (GFAP) and cleaved caspase-3 expression. Based on the results, metformin caused a significant increase in the superoxide dismutase (SOD) (P < 0.05) and glutathione peroxidase (GSH-Px) (P < 0.01) activities. On the other hand, it reduced the concentrations of TNF-α and malondialdehyde, compared to the ethanol group (P < 0.01). In the metformin group, there was a reduction in cell apoptosis in the hippocampus, as well as GFAP-positive cells (P < 0.01). Overall, apoptotic signaling, regulated by the oxidative inflammatory cascade, can be suppressed by metformin in adult brain rats following animal model of fetal alcohol spectrum disorders.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Metformina , Síndromes Neurotóxicas , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Modelos Animais de Doenças , Etanol/toxicidade , Feminino , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Transtornos do Espectro Alcoólico Fetal/metabolismo , Humanos , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Estresse Oxidativo , Gravidez , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
13.
J Neurodev Disord ; 14(1): 21, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305552

RESUMO

BACKGROUND: Fetal alcohol spectrum disorders (FASD) are common, yet preventable developmental disorders that stem from prenatal exposure to alcohol. This exposure leads to a wide array of behavioural and physical problems with a complex and poorly defined biological basis. Molecular investigations to date predominantly use rodent animal models, but because of genetic, developmental and social behavioral similarity, primate models are more relevant. We previously reported reduced cortical and hippocampal neuron levels in an Old World monkey (Chlorocebus sabaeus) model with ethanol exposure targeted to the period of rapid synaptogenesis and report here an initial molecular study of this model. The goal of this study was to evaluate mRNA expression of the hippocampus at two different behavioural stages (5 months, 2 years) corresponding to human infancy and early childhood. METHODS: Offspring of alcohol-preferring or control dams drank a maximum of 3.5 g ethanol per kg body weight or calorically matched sucrose solution 4 days per week during the last 2 months of gestation. Total mRNA expression was measured with the Affymetrix GeneChip Rhesus Macaque Genome Array in a 2 × 2 study design that interrogated two independent variables, age at sacrifice, and alcohol consumption during gestation. RESULTS AND DISCUSSION: Statistical analysis identified a preferential downregulation of expression when interrogating the factor 'alcohol' with a balanced effect of upregulation vs. downregulation for the independent variable 'age'. Functional exploration of both independent variables shows that the alcohol consumption factor generates broad functional annotation clusters that likely implicate a role for epigenetics in the observed differential expression, while the variable age reliably produced functional annotation clusters predominantly related to development. Furthermore, our data reveals a novel connection between EFNB1 and the FASDs; this is highly plausible both due to the role of EFNB1 in neuronal development as well as its central role in craniofrontal nasal syndrome (CFNS). Fold changes for key genes were subsequently confirmed via qRT-PCR. CONCLUSION: Prenatal alcohol exposure leads to global downregulation in mRNA expression. The cellular interference model of EFNB1 provides a potential clue regarding how genetically susceptible individuals may develop the phenotypic triad generally associated with classic fetal alcohol syndrome.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Animais , Pré-Escolar , Chlorocebus aethiops , Modelos Animais de Doenças , Efrina-B1/metabolismo , Efrina-B1/farmacologia , Etanol/metabolismo , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/metabolismo , Hipocampo/metabolismo , Humanos , Macaca mulatta/genética , Macaca mulatta/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia
14.
Brain Res Bull ; 183: 57-72, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35227769

RESUMO

Fetal alcohol spectrum disorder (FASD) caused by mother's exposure to alcohol during pregnancy is a congenital neurological disease of the fetus resulting in fetal developmental and intellectual disabilities, cognitive impairment, and coordination disorder. Excess oxidative stress and neuroinflammatory responses were an important factor in neuropathological changes in FASD. Astaxanthin (AST) was a potent antioxidant and anti-inflammatory carotenoid. Therefore, this study proposed to explore how AST treatment can ameliorate morphological changes in the hippocampus and cognitive impairment in FASD rats by reducing oxidative stress and neuroinflammation in the brain. An alcohol atomizer was used from postnatal day (P) 2 to P10 to induce the FASD rat model. They were treated with AST (10 mg/kg body weight/day, intraperitoneal injection) for 8 consecutive days starting at P53 and sacrificed at P60. FASD rats had growth retardation and facial dysmorphologies, excessive oxidative stress and neuroinflammation in the hippocampus, decreased choline acetyltransferase (ChAT) expression in MS nucleus, spine loss on hippocampal CA1 pyramidal neurons, and poor performance in spatial learning and memory and sensory-motor coordination. After AST treatment, oxidative stress, neuroinflammation, cholinergic system, excitatory synaptic structure and behavior of FASD rats improved. Therefore, our study provided evidence to support the proposal that AST could be considered to treat FASD.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Animais , Etanol/metabolismo , Feminino , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Transtornos do Espectro Alcoólico Fetal/metabolismo , Hipocampo/metabolismo , Gravidez , Ratos , Xantofilas/metabolismo , Xantofilas/farmacologia , Xantofilas/uso terapêutico
15.
Pharmacol Biochem Behav ; 214: 173342, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134449

RESUMO

Fetal Alcohol Spectrum Disorder (FASD) is characterized by a variety of morphological, behavioural and cognitive deficits, ranging from mild to severe. Numerous animal models, including the zebrafish, have been employed to better understand the onset, expression and progression of this disorder. Embryonic ethanol-induced deficits in learning and memory, anxiety, social responses and elevated alcohol self-administration have been successfully demonstrated in zebrafish. Studies in zebrafish have also shown the expression of these behavioural deficits depends upon the developmental stage of ethanol exposure, the age of observation, as well as the genotype (strain or population origin) of the tested zebrafish. Here, we investigate how the genotype and age of observation may influence embryonic ethanol-induced alterations in anxiety-like responses in zebrafish. Zebrafish embryos exposed to either 0% or 1% (vol/vol) ethanol at 24hpf were tested in an open tank at one of three stages: larval (6-8 days post fertilization (dpf)), mid-larval (16-18dpf), or juvenile (26-28dpf). Two genotypes were tested in this manner, ABNS (a quasi-inbred strain) and ABSK (a mix of AB, TU and TL strains). We found embryonic ethanol induced behavioural changes to significantly differ depending on the genotype and age of observation. For example, significant differences between control and ethanol exposed zebrafish in both genotypes were observed in juvenile zebrafish, but few significant treatment effects were observed in larval zebrafish. Additionally, ethanol appeared to alter anxiety-like behaviours in the ABNS genotype but did not have as robust of an effect on the ABSK genotype. Lastly, there were significant behavioural differences between unexposed (control) zebrafish of the two genotypes, suggesting baseline behavioural differences despite a common AB genetic origin.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Peixe-Zebra , Animais , Ansiedade/induzido quimicamente , Ansiedade/genética , Modelos Animais de Doenças , Etanol/farmacologia , Feminino , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transtornos do Espectro Alcoólico Fetal/psicologia , Genótipo , Humanos , Larva , Gravidez , Peixe-Zebra/genética
16.
J Neurosci Res ; 100(8): 1585-1601, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35014067

RESUMO

Ethanol exposure during the early stages of embryonic development can lead to a range of morphological and behavioral differences termed fetal alcohol spectrum disorders (FASDs). In a zebrafish model, we have shown that acute ethanol exposure at 8-10 hr postfertilization (hpf), a critical time of development, produces birth defects similar to those clinically characterized in FASD. Dysregulation of the Sonic hedgehog (Shh) pathway has been implicated as a molecular basis for many of the birth defects caused by prenatal alcohol exposure. We observed in zebrafish embryos that shh expression was significantly decreased by ethanol exposure at 8-10 hpf, while smo expression was much less affected. Treatment of zebrafish embryos with SAG or purmorphamine, small molecule Smoothened agonists that activate Shh signaling, ameliorated the severity of ethanol-induced developmental malformations including altered eye size and midline brain development. Furthermore, this rescue effect of Smo activation was dose dependent and occurred primarily when treatment was given after ethanol exposure. Markers of Shh signaling (gli1/2) and eye development (pax6a) were restored in embryos treated with SAG post-ethanol exposure. Since embryonic ethanol exposure has been shown to produce later-life neurobehavioral impairments, juvenile zebrafish were examined in the novel tank diving test. Our results further demonstrated that in zebrafish embryos exposed to ethanol, SAG treatment was able to mitigate long-term neurodevelopmental impairments related to anxiety and risk-taking behavior. Our results indicate that pharmacological activation of the Shh pathway at specific developmental timing markedly diminishes the severity of alcohol-induced birth defects.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Animais , Embrião não Mamífero/metabolismo , Etanol/toxicidade , Feminino , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Transtornos do Espectro Alcoólico Fetal/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Gravidez , Peixe-Zebra/metabolismo
17.
Neurochem Res ; 47(4): 1001-1011, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35040027

RESUMO

Several experimental and clinical findings suggest that ethanol consumption during pregnancy activates an oxidative-inflammatory cascade followed by wide apoptotic neurodegeneration within several brain areas, including the hippocampus. Crocin can protect neurons because of its antioxidant, anti-inflammatory, and antiapoptotic effects. This study evaluated the crocin protective impact on ethanol-related neuroinflammation and neuronal apoptosis in the hippocampus of rat pups exposed to alcohol over postnatal days. Ethanol (5.25 g/kg) was administrated in milk solution (27.8 ml/kg) by intragastric intubation 2-10 days after birth. The animals received crocin (15, 30, and 45 mg/kg) 2-10 days after birth. The hippocampus-dependent memory and spatial learning were evaluated 36 days after birth using the Morris water maze task. Further, the concentrations of TNF-α and antioxidant enzymes were determined using ELISA assay to examine the antioxidant and anti-inflammatory activities. Also, immunohistochemical staining was performed to evaluate the glial fibrillary acidic protein (GFAP), Ionized calcium binding adaptor molecule 1(Iba-1), and caspase-3 expression. The administration of crocin significantly attenuated spatial memory impairment (P < 0.01) after ethanol neurotoxicity. Also, crocin led to a significant enhancement in SOD (P < 0.05) and GSH-PX (P < 0.01), whereas it caused a reduction in the TNF-α and MDA concentrations compared to the ethanol group (P < 0.01). Moreover, the hippocampal level of caspase-3 (P < 0.01) and the number of GFAP and Iba-1-positive cells decreased in the crocin group (P < 0.001). Crocin suppresses apoptotic signaling mediated by the oxidative-inflammatory cascade in rat pups exposed to ethanol after birth.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Fármacos Neuroprotetores , Animais , Apoptose , Carotenoides , Modelos Animais de Doenças , Etanol/toxicidade , Feminino , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transtornos do Espectro Alcoólico Fetal/prevenção & controle , Hipocampo/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Gravidez , Ratos , Ratos Wistar
18.
Curr Neuropharmacol ; 20(6): 1158-1173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34720083

RESUMO

Alcohol consumption during pregnancy and lactation is a widespread preventable cause of neurodevelopmental impairment in newborns. While the harmful effects of gestational alcohol use have been well documented, only recently, the role of paternal preconceptual alcohol consumption (PPAC) prior to copulating has drawn specific epigenetic considerations. Data from human and animal models have demonstrated that PPAC may affect sperm function, eliciting oxidative stress. In newborns, PPAC may induce changes in behavior, cognitive functions, and emotional responses. Furthermore, PPAC may elicit neurobiological disruptions, visuospatial impairments, hyperactivity disorders, motor skill disruptions, hearing loss, endocrine, and immune alterations, reduced physical growth, placental disruptions, and metabolic alterations. Neurobiological studies on PPAC have also disclosed changes in brain function and structure by disrupting the growth factors pathways. In particular, as shown in animal model studies, PPAC alters brain nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) synthesis and release. This review shows that the crucial topic of lifelong disabilities induced by PPAC and/or gestational alcohol drinking is quite challenging at the individual, societal, and familial levels. Since a nontoxic drinking behavior before pregnancy (for both men and women), during pregnancy, and lactation cannot be established, the only suggestion for couples planning pregnancies is to completely avoid the consumption of alcoholic beverages.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Consumo de Bebidas Alcoólicas , Animais , Modelos Animais de Doenças , Etanol/farmacologia , Feminino , Transtornos do Espectro Alcoólico Fetal/etiologia , Transtornos do Espectro Alcoólico Fetal/metabolismo , Humanos , Recém-Nascido , Placenta/metabolismo , Gravidez
19.
Exp Neurol ; 347: 113919, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752786

RESUMO

Despite several decades of research and prevention efforts, fetal alcohol spectrum disorders (FASD) remain the most common preventable cause of neurodevelopmental disabilities worldwide. Animal and human studies have implicated fetal alcohol-induced alterations in epigenetic programming as a chief mechanism in FASD. Several studies have demonstrated fetal alcohol-related alterations in methylation and expression of imprinted genes in placental, brain, and embryonic tissue. Imprinted genes are epigenetically regulated in a parent-of-origin-specific manner, in which only the maternal or paternal allele is expressed, and the other allele is silenced. The chief functions of imprinted genes are in placental development, somatic growth, and neurobehavior-three domains characteristically affected in FASD. In this review, we summarize the growing body of literature characterizing prenatal alcohol-related alterations in imprinted gene methylation and/or expression and discuss potential mechanistic roles for these alterations in the teratogenic effects of prenatal alcohol exposure. Future research is needed to examine potential physiologic mechanisms by which alterations in imprinted genes disrupt development in FASD, which may, in turn, elucidate novel targets for intervention. Furthermore, mechanistic alterations in imprinted gene expression and/or methylation in FASD may inform screening assays that identify individuals with FASD neurobehavioral deficits who may benefit from early interventions.


Assuntos
Encéfalo/metabolismo , Etanol/efeitos adversos , Transtornos do Espectro Alcoólico Fetal/metabolismo , Impressão Genômica/fisiologia , Placenta/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Etanol/toxicidade , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Humanos , Placenta/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Teratógenos/toxicidade
20.
Dev Neurobiol ; 82(1): 29-40, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34687497

RESUMO

The harmful consumption of ethanol is associated with significant health problems and social burdens. This drug activates a complex network of reward mechanisms and habit formation learning that is supposed to contribute to the consumption of increasingly high and frequent amounts, ultimately leading to addiction. In the context of fetal alcohol spectrum disorders, fetal alcohol syndrome (FAS) is a consequence of the harmful use of alcohol during pregnancy, which affects the embryonic development of the fetus. FAS can be easily reproduced in zebrafish by exposing the embryos to different concentrations of ethanol in water. In this regard, the aim of the present review is to discuss the late pathological implications in zebrafish exposed to ethanol at the embryonic stage, providing information in the context of human fetal alcoholic spectrum disorders. Experimental FAS in zebrafish is associated with impairments in the metabolic, morphological, neurochemical, behavioral, and cognitive domains. Many of the pathways that are affected by ethanol in zebrafish have at least one ortholog in humans, collaborating with the wider adoption of zebrafish in studies on alcohol disorders. In fact, zebrafish present validities required for the study of these conditions, which contributes to the use of this species in research, in addition to studies with rodents.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Peixe-Zebra , Animais , Embrião não Mamífero , Desenvolvimento Embrionário , Etanol/toxicidade , Feminino , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transtornos do Espectro Alcoólico Fetal/psicologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...